[ad_1]

Perovskite solar cells represent an emerging photovoltaic technology being researched and developed by academic and industrial laboratories worldwide because it is able to bring together at the same time low-cost manufacturing (materials/processes) together with high power conversion efficiencies of the end product.

The vast majority of R&D has focused on the technology operating at standard test conditions (i.e. bright sunlight).

Figure schematizing the demonstration of perovskite solar cell technology with outstanding power outputs under indoor lighting for powering electronics in smart buildings, the internet of things, and wireless sensors.

The Centre for Hybrid and Organic Solar Energy (CHOSE), Department of Electronic Engineering University of Rome – Tor Vergata, in collaboration with the Department of Physics and Astronomy and London Centre for Nanotechnology at University College London, have developed device architectures with new solution-processed composite electron transport layers that work exceptionally well under artificial indoor lighting (i.e. white LED lamps). Indoor illumination delivers a different spectrum (concentrated in the visible range) and incident power (i.e. 2 to 3 orders of magnitude smaller) compared to that of the sun at standard test conditions. By inserting a thin MgO overlayer over a more conventional SnO2 transport layer, between the perovskite semiconductor film and the bottom transparent electrode, detrimental charge recombination was reduced.

The resulting improvement in the capability of extracting useful electrons by the photovoltaic cell is especially critical at the low illumination levels typically found indoors and has considerable influence on device performance. In fact, the power conversion efficiency improved by 20{0b7da518931e2dc7f5435818fa9adcc81ac764ac1dff918ce2cdfc05099e9974} and the maximum power density was 20.2 µW/cm2 at 200 lx and 41.6 µW/cm2 at 400 lx (corresponding to a power conversion of 27{0b7da518931e2dc7f5435818fa9adcc81ac764ac1dff918ce2cdfc05099e9974}) under white LED illumination. To date, these represent the highest output power densities reported for any photovoltaic technology under these typical illumination ranges found in home and office environments.

Ambient indoor conditions represent a milder environment compared to stringent outdoor conditions and are much less demanding on device lifetimes. This, together with their exceptional efficiency under artificial lighting, suggests an initial market for this new photovoltaic technology which is still seeking long-term stability outdoors. Furthermore, all layers of the cells, except for the two electrodes, were solution-processed at low temperatures, making the technology easy to integrate with other printed electronic components on the same substrate, and compatible with low-cost manufacturing. Low-temperature processing means that this technology can be fabricated not only on glass but even on flexible plastic substrate films and thus more-easily integrated with a variety of surfaces and objects.

Figure: perovskite solar cells on glass (left) and plastic film (right)

There are many objects and low-power devices that need energy to operate, including portable electronics, devices that make buildings/homes “smart,” and the fast-rising markets of autonomous indoor wireless sensor networks and the internet of things. Having a power source able to efficiently convert energy from indoor lighting, as well as outdoor sunlight, into electrical energy would enable many of these to do without batteries that require periodic replacing and connections to wires. The unparalleled performance demonstrated by these new solar cell architectures can pave the way for perovskite photovoltaics to contribute strongly to energy harvesting and the powering of indoor electronics of the future.

These findings are described in the article entitled Highly efficient perovskite solar cells for light harvesting under indoor illumination via solution processed SnO2/MgO composite electron transport layers, recently published in the journal Nano Energy. This work was conducted by Janardan Dagar, Sergio Castro-Hermosa, Giulia Lucarelli and Thomas M. Brown from the Centre for Hybrid and Organic Solar Energy (CHOSE), Department of Electronic Engineering, University of Rome Tor Vergata, and Franco Cacialli from The London Centre for Nanotechnology, University College London.

Opinions expressed are solely the authors and do not express the views or opinions of Science Trends nor the author’s institution.

[ad_2]

Source link

0 replies

Leave a Reply

Want to join the discussion?
Feel free to contribute!

Leave a Reply

Your email address will not be published. Required fields are marked *